
ARTv1i3

Osma Ahvenlampi

ARTv1i3 ii

COLLABORATORS

TITLE :

ARTv1i3

ACTION NAME DATE SIGNATURE

WRITTEN BY Osma Ahvenlampi February 28, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ARTv1i3 iii

Contents

1 ARTv1i3 1

1.1 No title . 1

1.2 Editorial . 2

1.3 The latest funky interests . 3

1.4 The mail room . 4

1.5 Programming in C . 6

1.6 AmigaE Tutorial . 9

1.7 Introduction to Flex and Bison . 16

1.8 Installer . 27

1.9 ARexx tutorial . 28

1.10 Results of the ARTech survey . 31

1.11 BOOPSI guide . 32

1.12 Contributors, staff, and contact addresses . 35

ARTv1i3 1 / 35

Chapter 1

ARTv1i3

1.1 No title

Amiga Report Technical Journal

Amiga Report Technical Journal Volume 1 Issue 3

Amiga Report Technical Journal and ARTJ are Copyright © 1995, FS
Publications, All Rights Reserved.

In this issue

Departments

*
Editorial

*
Pointers
-- Hot spots, news, and files

*
Reader~mail

*
C~Programming
, a new column by Ken Howe

Features

* First part of an
Amiga~E~course
, with Sebastian Rittau as the

instructor

* Introduction to
Flex~and~Bison
, by Joe C. Solinsky

* Robert Reiswig continues the
Installer~series

* Josef Faulkner’s
ARexx~tutorial

* The
ARTech~survey~#1~results

ARTv1i3 2 / 35

* Chris Aldi’s
BOOPSI~guide
continues

Producing Editor, Osma Ahvenlampi, Osma.Ahvenlampi@hut.fi

Supervising Editor, Jason Compton, jcompton@xnet.com, FS
Publications.

Contributors, staff, and contact addresses
___ ←↩

Views, Opinions and Articles presented herein are not necessarily those
of the editors and staff of Amiga Report Technical Journal, hereafter
ARTJ, or of FS Publications. Permission to reprint articles is hereby
denied, unless otherwise noted. All reprint requests should be directed
to the editor. ARTJ and/or portions therein may not be edited in any way
without prior written permission. However, translation into a language
other than English is acceptible, provided the editor is notified
beforehand and the original meaning is not altered. ARTJ may be
distributed on privately owned not-for-profit bulletin board systems
(fees to cover cost of operation are acceptable), and major online
services such as (but not limited to) Delphi and Portal. Distribution on
public domain disks is acceptable provided proceeds are only to cover the
cost of the disk (e.g. no more than $5 US). CD-ROM compilers should
contact the editor. Distribution on for-profit magazine cover disks
requires written permission from the editor. ARTJ is a not-for-profit
publication. ARTJ, at the time of publication, is believed reasonably
accurate. ARTJ, its staff and contributors are not and cannot be held
responsible for the use or misuse of information contained herein or the
results obtained there from. ARTJ is not affiliated with Escom AG. All
items quoted in whole or in part are done so under the Fair Use Provision
of the Copyright Laws of the United States Penal Code. Any Electronic
Mail sent to the editors may be reprinted, in whole or in part, without
any previous permission of the author, unless said electronic mail is
specifically requested not to be reprinted.

1.2 Editorial

Never depend on computers. This issue is late for a combination ←↩
of

reasons, mostly because of a HD crash that forced me to start over
with an already tight schedule. Never depend on your site
adminstration’s backup schedules either, do your backups
independently. Failures always happen at the worst possible moment.

To make up for the long delay, in this issue we a have a lot of
interesting stuff. An article revealing some of the secrets behind the
often-heard-of but little known development tools

flex~and~bison

ARTv1i3 3 / 35

(or lex and yacc), a
new~column~about~C~programming
, the first part

of an
AmigaE~course
, an
ARexx~tutorial
, and more
Installer

tips and
BOOPSI~magic
.

While Amiga Technologies still keeps us waiting for anything tangible,
be it in the way of hardware or even concrete information about the
future, the independent developer scene is still going strong. Every
once in a while I’m about to lose the hope of Amiga surviving, but
usually it doesn’t take more than a quick look on Aminet to see that
the platform is very much alive. A big thanks and good luck to all the
people who are keeping it that way. Many exciting new programs have
appeared since the last issue, some of them mentioned in the

pointers
section. I’m sorry I can’t list them all, but that alone

would be almost a full-time job ;)

Yours,

Osma Ahvenlampi, editor of Amiga Report Technical Journal.

1.3 The latest funky interests

/* Pointers.c */

#include "pointerdefs.h"

ULONG Main(int Attraction) {
Object *Pointers = NULL;

Pointers = NewObject(PointerClass, NULL,
POINTER_FTP, NewObject(FTPPointerClass, NULL,

FTP_Site, AMINET,
FTP_Filename, "dev/gui/ClassActDemo.lha",
FTP_ShortDesc, "ClassAct, Font adaptive BOOPSI GUI toolkit",
FTP_FullDesc, "dev/gui/ClassActDemo.readme",
FTP_Flags, FTP_COOL | FTP_BOOPSI | FTP_TOOL | ←↩

FTP_DEVELOPMENT,
TAG_DONE),

POINTER_FTP, NewObject(FTPPointerClass, NULL,
FTP_Site, AMINET,
FTP_Filename, "comm/tcp/FTPMount.lha",
FTP_ShortDesc, "Mounts FTP sites as part of a filesystem",
FTP_FullDesc, "comm/tcp/FTPMount.readme",
FTP_Flags, FTP_NEAT | FTP_NETWORK | FTP_TOOL,

ARTv1i3 4 / 35

TAG_DONE),

POINTER_FTP, NewObject(FTPPointerClass, NULL,
FTP_Site, AMINET,
FTP_Filename, "gfx/edit/Iconian2_94.lha",
FTP_ShortDesc, "OS3.0 icon editor, NewIcon support.",
FTP_FullDesc, "gfx/edit/Iconian2_94.readme",
FTP_Flags, FTP_ICONS | FTP_WORKBENCH | FTP_UTILITY,
TAG_DONE),

POINTER_FTP, NewObject(FTPPointerClass, NULL,
FTP_Site, AMINET,
FTP_Filename, "text/edit/QuillDemo.lha",
FTP_ShortDesc, "Demo of Digital Quill, NEW text editor",
FTP_FullDesc, "text/edit/QuillDemo.readme",
FTP_Flags, FTP_DEMO | FTP_EDITOR | FTP_COMMERCIAL,
TAG_DONE),

POINTER_FTP, NewObject(FTPPointerClass, NULL,
FTP_Site, AMINET,
FTP_Filename, "text/print/HWGPOSTbeta7.lha",
FTP_ShortDesc, "PostScript Library with many Level 2 features ←↩

",
FTP_FullDesc, "text/print/HWGPOSTbeta7.readme",
FTP_Flags, FTP_LIBRARY | FTP_GRAPHICS | FTP_PRINTER,
TAG_DONE),

POINTER_FTP, NewObject(FTPPointerClass, NULL,
FTP_Site, "max.physics.sunysb.edu",
FTP_Filename, "pub/amosaic/AMosaic20Prerelease3_AmiTCP.lha",
FTP_ShortDesc, "AMosaic 2.0 pre 3 for AmiTCP",
FTP_FullDesc, "pub/amosaic/README",
FTP_Flags, FTP_WEB | FTP_NETWORK | FTP_READER,
TAG_DONE),

TAG_DONE);

if(Pointers)
{

DisposeObject(Pointers);
return ((FUNKY | COOL | THRIVING));

}
else return(NULL); } /*

* If you would like to see your pointer entered into next month’s Main(←↩
Attraction),

* EMail your struct definition to artech@warped.co.

*/

1.4 The mail room

From: "tinic urou" tinic@tinic.mayn.sub.de

I have just read you Issue 2 of the ARTech and I can just say: FINE!

Although there are not much articles (The copyright notice looks

ARTv1i3 5 / 35

bigger than the articles 8)), its very interesting. Where can I get
the "pointerdefs.h" ?? 8))

It could be interesting if you could include a reference guide for
Amiga-Programmers. I always had the problem to get examples sources
and documentations for special hardware and software.

Examples:

* Where can I get sources of an example implementation of a
Halftone-Dithering? Who comes to the idea, looking at the
Sourcecode of "SpecialHost for AmigaTeX" which includes nearly all
dither-routines?

* How to get a documentation for SCSI programming? Did you really
know that under "http://www.abekrd.co.uk/SCSI2/" you find a
complete reference?

* Where to get a documentation for a scanner?

* Where can I find good examples of programming Msg-Ports? Whats the
filename in this archive?

* Where to get documenation for a XXX-algorithm and where can I find
example sources?

There are many other questions. A list which could be completed every
issue would be nice.

An article how to make good AmigaGuide dcumentations and online helps
and when to use them, would also be nice, i hate bad docs!

-

[Good suggestions. Would someone like to volunteer to maintain a such a
reference?]

From: "Victor Ramamoorthy S3 Inc (408)980-5401 x3279" vrm@s3.com

I have read both the issues of ARTech and found it to be interesting.
Can you please make the articles a bit long and self-contained instead
of splitting them in parts?

Congrats for the good work.

[From now on, back issues will be updated to contain links to the
continuation articles. This will of course only work on the official
AR Tech Journal WWW sites.]

From: Brian Turmelle bturmelle@ctron.com

Hello,
This is very strange. When I click on the Issue 1,April 07, 1995
archive HTML, instead of trying to download the file I get what looks
like binary information on the screen. I’m using netscape but for some
reason it’s reading it as ascii instead of knowing to download it.
I’ve never experienced this at any other site. Perhaps it’s not
correctly archived?

-

ARTv1i3 6 / 35

[This is an unfortunate problem in WWW servers and browsers that do not
recognise an LhA archive as binary data. The easiest remedy is to turn
on loading to local disk before following the archive link. This is
the "load to local disk" option in Mosaic, and the "d)ownload" command
in Lynx. In Netscape, click on the link while holding down the shift
key.]

From: "Richard N. Hurt" rhurt@thepoint.net

Hello all,
Thanx for putting together a good Amiga programming source of info. I
only have a few suggestions.

* What about a series of ’Beginning to program on the Amiga’
articles? Using different languages (not just C).

* Comparison of different programming languages? Amiga-E, LISP,
ARexx, etc...

* Hardware section? How to put in that extra floppy. How to
autoconfig that memory.

Keep up the good work! :)

-

[I hope you like the Amiga E course starting in this issue. Any
hardware experts out there interested in writing some articles?]

1.5 Programming in C

Programming in C
By Ken Howe <khowe90@entergy.com>

About three months ago I finally gained access to the internet and
started browsing around Aminet. I usually look for utilities and
source code to help me in my programming efforts on the Amiga. I also
read Amiga Report and lo and behold I spotted a copy of the first
Issue of Amiga Report Tech Journal. After reading the first and now
second edition I thought the concept had great potential.

I know how difficult it is learning to program the Amiga especially as
most Amiga magazines only touch the surface of programming, running
the same old simple programming tutorials. I used to buy those
magazines month in month out hoping to find something useful but no.
So I soldiered on as most people have and learned what I know very
slowly. I am by no means a great Amiga programmer and alot of people
may already know most of the concepts that I will be talking about in
the coming issues so if you think you can do better put together an
Article and maybe you can teach me something!!

Ive been doing small development on the Amiga on and off for about 3
years mainly just to teach myself C and soon C++. I program Client
Server Windows Application for a living, can Program over 10 different

ARTv1i3 7 / 35

programming languages and have been programming for over eight years.
I may not be an Amiga expert but I hope I know a bit about
programming.

Well thats the background, Ive only had a week to put this article
together so Im just going to do a few programming tips, mainly a few
tricks I have learn’t about ANSI C. I hope to do more article for
future issues with a bit more meat in them!

1. Stop yourself from making the if(a = b) mistake by declaring a
define statement as follows

#define EQU ==

Then anywhere you would normally use if(a == b) use if(a EQU b).
Your C compiler may already have this defined. I always include a
header file of mine called Kens.h with this define and a few other
things just to make sure.

2. Initialised auto variables for strings, arrays or any composite
object is very inefficient. If you do not recognise the name it
simply put means a variable that is automatically initialised for
you. Example:

int i = 0;

Each object defined in this way will occupy exactly twice the storage
space. Also the compiler will reset the variable every time the
function is called. This involves copying the variable contents
from a safe location in memory into your working variable.

This not only wastes CPU time, it also makes for larger memory
overheads and larger stack usage. In most cases the variable can
be changed to be static if this is not the case then try to use a
global buffer shared between all routines, which you can
initialise yourself. Example:

Replace: void func(void) { char ls_Msg = "This is time consuming";...}
With: void func(void) { static char ls_Msg = "Much Better";...}

3. Pre increment/decrement operators are more efficient than post
increment/decrement operators. This is valid mostly when they are
combined in expressions using compare. Example

if (++li_A < li_B)

There is no saving when they are being used in the simple for of
li_A++ or li_B++. The reason for the benefit of (++li_A over
(li_A++ is that the compiler must generate an extra jump
instruction to prevent the increment from happening.

4. You can reduce the size of simple if/else blocks, where the
instructions are single lines by always performing the else
instruction then having a plain if. You remove a JMP instruction
from your code. Example:

Replace: if(li_A < li_B) li_Z = 10; else li_Z = 0;

ARTv1i3 8 / 35

With: li_Z = 0; if(li_A < li_B) li_Z = 10;

5. You can use register variables to dramatically increase the speed of
loops within your program but! you must be careful when declaring
more than one register in a single declare statement.

When you declare the register variables, declare them singularly with
the inner most variable declared first. Thus making sure the most
used variable is the register variable whenever a spare register
is available. Example:

Replace: register int li_I, li_J;
With: register int li_J; /* J in inner most variable */

register int li_I;

6. In SAS/C you can change the size of the default console window by
including the following command just after your last include:

char __stdiowin[]="CON:0/0/700/550/Window Title";

This command works the same as the DOS shell program so you can adjust
the size and coordinates of the window.

7. Care should be taken when defining a macro that makes up more than one
statement, for example:

#define ABORT (void)printf("Aborting\n");exit(1);

It is easy then to use ABORT in other parts of the program but it can
cause problems when not used in a straight forward manner such as
in an if statement. In order to avoid problems like this you
should always enclose multi statement macros in a do {} while(0)
construct, for example:

#define ABORT do {(void)printf("Aborting\n");exit(1);} while(0);

8. Parameterized macros should always have parentheses () around the
parameters in a parameterized macro. The helps to overcome the
following.

#define SQR(number) (number * number)

li_Size = SQR(5)

equates to

li_Size = (5 * 5)

but consider

li_Size = SQR(5 + 6)

equates to

li_Size = (5 + 6 * 5 + 6)

Therefore if we use the rule of always putting parentheses around

ARTv1i3 9 / 35

parameters we overcome the problem, for example:

#define SQR(number) ((number) * (number))

li_Size = SQR(5 + 6)

gives

li_Size = ((5 + 6) * (5 + 6))

(NOTE) never use ++ and -- with macros, consider:

li_Size = SQR(li_Val++)

equates to

li_Size = ((li_Val++) * (li_Val++))

Yuk!

9. The last tip is not much of a tip really if you are already
programming in C but! if you are thinking about starting C you
will probably want a book to learn from. And being new to C you
will probably ask other people for advice and they will say... buy
the K&R book The C programming language.

Well I have to disagree, working in computing I am fortunate to have
access to lots of books on programming and if there is a book I
want to read I can order it free of charge. Most people recommend
the K&R book as they have not tried many other books.

I found the K&R book very tuff going and Iam not new to programming.
Therefore I would like to take this opportunity to recommend the
best two book out of the 12 I have at my disposal:

As a quick reference: C Quick Reference, by QUE, ISBN 0-88022-372-3 (
about $8) Is a compact (154 pages) reference to the C language
and is great for looking up commands and C syntax.

As a tutorial book: Using C, by QUE, ISBN 0-88022-571-8 (about $30)
Is almost 1000 pages. It is split into 3 books, 1) the tutorial is
brilliant with loads of meaning full examples it start easy and
will take you through most of the advanced stuff. 2) A complete C
library reference. 3) An introduction to C++.

Well thats all for this issue I hope to have a full and hopefully
useful routine to pick over next issue.

Ken Howe can be reached at khowe90@entergy.com

1.6 AmigaE Tutorial

AmigaE course
Sebastian Rittau <Jolly_Roger@H-Raiser.Berlinet.de>

ARTv1i3 10 / 35

Introduction

Some of you might know AmigaE. It is a programming language for the
Amiga. It is a mix between C, Pascal and has features from other
programming languages like LISP. It has also an inline assembler which
gives E additional power. But E is easy to understand and that’s why
it is the ideal language for beginners and advanced programmers.
AmigaE is best at system programming.

This course should help beginners to learn E and also gives some hints
for advanced programmers. You need at least AmigaE 2.1b (the last
freeware version) and for the later parts AmigaE 3.1a (registered) for
this course. Both versions should be available at the AmiNet (dev/e).
Additionally you need at least Kickstart and Workbench 2.04 (V37).

From AmigaE 3.0 on, a tutorial to E is included in the archive. It is
another good source to learn E. But this course is more system
programming oriented, that means, it will show you how to program a
GUI (Graphical User Interface) and how to program a good
system-conform program.

Installing

After dearchiving the archive in the directory of your choice, you
should make a special Shell for AmigaE:

* start your favourite text-editor (Ed, MEmacs, GoldEd, CED, ...)
(if you use a wordprocessor you have to save the files as ASCII!)

* load "S:Shell-Startup"

* add the following lines (replace <e-dir> with the directory you
installed E in):
cd <e-dir>
path bin add;
assign EModules: Modules;

* save the file as S:E-Startup (not S:Shell-Startup!)

* copy the file SYS:System/Shell.info to any directory and rename it
to E-Shell.info

* click on the new icon and choose Icons/Information... from the
menu

* search for the tooltype FROM=xyz and change it FROM=S:E-Startup if
you can’t find it, click on add and type in FROM=S:E-Startup and
press return

* click on save

Now you can start the e-shell by double-clicking on the new icon.

Okay now make a directory for the course: type in

makedir course
cd course

in the e-shell.
Compiling programs

To make a program you have to write it in a easy readable form in any
ASCII-Editor. All commands have a name which explains their function:

ARTv1i3 11 / 35

PROC
short for Procedure

IF
if something is true

THEN
then do something

WriteF
Write a sentence
and so on...

But these form is not readable for the computer. (Try to load any
program into a textviewer. You don’t see PROCs and that stuff, you
only see cryptic characters) That’s why we must translate the easy
readable text (called the sourcecode or only source) into a form which
is easy readable for the computer (the program). We use the program ec
which is in the bin sub-directory of the e-dir to "compile"
(translate) the sourcecode into the program. Because ec "compiles" the
program it is called "compiler".

All sourcecodes (the files which contains the for you readable
sentences) must have the ending .e to let ec know that it is a source.
To compile the program you have to type
ec <filename of the sourcecode>
in the e-shell. The ready-to-run program will have the name of the
sourcecode without the ending .e (i.e. myprog.e will become myprog and
so on...)
Comments

Okay, before beginning with out first program, I want to explain you
what comments are and what they are user for.

You can use comments in your sourcecode to explain the function of a
program-part or to give additional information about the program.
Comments are ignored by the compiler. You should use comments often to
explain your program. After a few weeks you don’t write on a program,
you can easily forget which function did what. The same problem
appears on big programs ("What was this $%"&§$" proc good for?").

Another purpose of comments is debugging (i.e. finding and deleting
errors). You can easily declare the parts of the program you don’t
need as comments.

There are to ways to make a comment:

One way is to mark the beginning of the comment with /* and the end
with */:

/* This is a comment - it is ignored by the compiler */

These comments are nested, that means, that for every /* you write
there must be a matching */:

/* This is a /* nested */ comment */

ARTv1i3 12 / 35

but:

/* This would give an /* error because there are too many /*s */

and:

/* Here are too many */s */

These comments can have more than one line:

/* This comment
is longer
than one line */

The second way to make comments need AmigaE 3.0 or above. You can
declare the rest of a line as comment by using -> :

-> This is a comment

INC x -> This too, but INC x is a command

PROCs

E-Programs are built of so-called procedures. Each procedure is a
little program which does a special job: a procedure could do output
on the screen, square a number, make a GUI, play a sound-routine, free
all memory that was allocated by another procedure and so on. Every
procedure can call another procedures.

To declare a procedure:

PROC nameofproc()
/* Here are your commands */
ENDPROC

It is called like nameofproc()

PROC
declares that here a new procedure begins. PROC must be
uppercase, because it is an keyword

nameofproc
you must give every procedure an unique name. The first
character must be lowercase!
valid names: myProc, tHiSmYoWnPrOc
not allowed: MyProc, ThIsMyOwNpRoC

()
Every procedure can have parameters. These parameters must be
enclosed by parantheses behind the name. (Parameters will be
explained later) If a procedure has no parameters, the room
between the parantheses remains empty

ENDPROC
ends a procedure. For every PROC there must be a matching

ARTv1i3 13 / 35

ENDPROC

nameofproc
to call a procedure just type its name, followed by

()
Again the parameters must be enclosed by parantheses behind the
name
PROC main()

The most important procedure is called main. Every program must have a
procedure with this name. The procedure main is called automatically
when the program is started. If the ENDPROC of the proc main is hit,
the program quits.

Okay, let’s write our first program:

* open your favourite editor

* type in the following program:

/* My first E-program */
PROC main()
ENDPROC

* save it as <e-dir>/course/firstprog.e

* change to the e-shell and type ec firstprog to compile the
program. If ec reports an error, check your code

* if you now type dir there should be the following output:

firstprog firstprog.e

* start firstprog. It is the ready-to-run-program

Whats that? Nothing happens? Oh, well, we have a proc but we have no
command in this proc. So read in the next chapter about a command
which writes something on the Shell.
WriteF()

With the command WriteF() you can write a string on the current shell.
(For advanced users to the stdout). If no current Shell is defined,
WriteF() opens a new Shell. A string is a sentence that is stored
somewhere in the memory.

Simple usage: WriteF(string)

WriteF
the command

(...)
the parantheses close in the arguments for this command

string
at the moment, we only use one argument. It is the string we
want to write to the Shell

Strings must be closed in by apostrophes: ’This is a string’

If you forget the apostrophes, the compiler will report an error.

Example: WriteF(’Hello World!’)

ARTv1i3 14 / 35

The sentence "Hello World!" would written on the Shell.

Okay, let’s add a WriteF() to our little program: add the line

WriteF(’Hello World!’)

to our program. Where do you have to put the line? Well, try it out,
compile the program and if the compiler returns no errors, start it.

If you really don’t know what to do, the program should now look like:

/* My first E-program */

PROC main()
WriteF(’Hello World!’)

ENDPROC

The indentation before the line WriteF(...) has not to be written. It
is only there to make clear, what belongs to the proc main. You should
use these indentations to make clear, which command-pairs belong
together.

Examples: PROC-ENDPROC; WHILE-ENDWHILE; IF-ELSE-ELSEIF-ENDIF and so
on.

If you have done it right, on the Shell there should be something like

Hello World!5.Work:AmigaE/Course>

Hmmmmmm, the prompt follows immediatly after "Hello World!". That
means that we have to include a linefeed (i.e. a character which
begins a new line) after "Hello World!". But because a linefeed is an
unprintable character, we have to use a controlcode. Controlcodes
begin with a backslash ("\") followed by a character. The character
"n" is used for a "newline" (i.e. a linefeed). That means that you
must add "\n" at the end of the string: WriteF(’Hello World!\n’)

Save, compile and start the changed version. Well, now it should be
correct... Wow, that is your first real program in E.
Again PROCs (Boring theory again :()

Okay, let’s write a program which uses different procs (You don’t have
to take over all comments to your own program, but you should take
over the comments which explain the program):

/* Not longer my first program
This one should show you how to use different procs */

/* Let’s begin with the main-procedure
Some people write the main-proc at the end of their programs, but I
write them at the beginning */

PROC main()
WriteF(’Before the first proc\n’) /* Don’t forget the newline (\n) */
/* Let’s call another procedure. The program goes on with firstproc */
firstproc()
WriteF(’After the first and before the second proc\n’)
/* Now let’s call the last proc */

ARTv1i3 15 / 35

secondproc()
WriteF(’After the second proc\n’)

ENDPROC

PROC firstproc()
WriteF(’Now the program is in the first proc\n’)

ENDPROC /* The program returns to the command it called */

PROC secondproc() IS WriteF(’Now the program is in the second proc\n’)

Save, compile and run it.

The output should be:

Before the first proc
Now the program is in the first proc
After the first and before the second proc
Now the program is in the second proc
After the second proc

Maybe you have noticed the line

PROC secondproc() IS WriteF(’Now the program is in the second proc\n’)

Well, this is a oneline-procedure. You can use these procs if you only
use one command. You don’t have to write ENDPROC.

PROC
define that a proc begins

secondproc()
name and arguments

IS
keyword that this is a oneline-proc

WriteF(...)
The command

Okay, what does our program do?

* First it writes a sentence (Before the first proc)

* Then it jumps into the procedure "firstproc"

* There it writes another sentence

* Now it returns to the commands after firstproc()

* There it writes the third sentence

* It jumps in another proc "secondproc"

* The fourth sentence

* An it returns again, now to WriteF(’After the second proc’)

* There it writes the last sentence

* At last, it quits

Now delete the line

secondproc()

What should happen? Just try the program to know whether you guess was
right.

ARTv1i3 16 / 35

Well, now let’s give you another example of procs:

/* Another proc-example */

PROC main()
firstproc()
secondproc()

ENDPROC

PROC firstproc()
secondproc()

ENDPROC

PROC secondproc()
WriteF(’This sentence should appear twice!\nIt is only written in the secon d ←↩

proc’)
ENDPROC

Next chapter it becomes really interesting. We learn about variables.
They are very powerfull. Every program needs them!

About the author

Well, I’m a student, which biggest hobby is my Amiga :). I bought my
first Computer (an A500) about 6 years ago and was facinated. After a
short time I began to write my first small programs in AmigaBasic
(Microsoft-Crap). When I bought a modem, last year, I discovered
AmigaE (V2.1b) and began to learn it. It was my first real
programming-language and thatswhy I had big problems with the
libraries and all that OS-stuff (I never had any book to programming
on the Amiga). Well, actually I try to wriggle through Assembly.

On the computer, I mainly program and visit bbs’es, but I am also
interested in much other things (like creating HTML-pages, though I
have no WWW-Access). My other hobby is learning for the school (not a
real hobby, but the only thing, I have time for).

1.7 Introduction to Flex and Bison

Introduction to Flex and Bison
Joe C. Solinsky <jcsky@cs.UCR.edu>

Introduction

There are a couple of languages out there that come with the GCC
distribution on Aminet which most of us will overlook as some sort of
enigmatic utility, unless they are pointed out. Flex and Bison are a
team of languages which sit on top of C or C++, and do a lot of the
dirty work in lexical analysis. If Flex is used just by itself, your
program can recognize single words or perform pattern matching based
on what are known as regular expressions. If Bison is used on top of
that, your program can handle grammar structures to deal with an

ARTv1i3 17 / 35

increasingly complex input, to the level of being able to write your
own programming language (compiled in C, of course), if for some
reason you would want to do this.

I won’t pretend to explain either one of these languages to any useful
level, because they are rather lengthy, but I hope that these basics
will give you a feel for what is going on as you read the core of this
article. Please read the extensive and useful AmigaGuide documentation
which is in the GCC 2.6.3 distribution. I found it to be more useful
at times in a hypertext format than the traditional books by O’Reilly
& Associates, although I am not about to knock their book (which have
the auspicious title of Lex & Yacc, based on the minutely different
predecessors of Flex and Bison named respectively), and I admit to
reading it cover-to-cover (excepting the appendices which seem to be
mainly for the ’old salts’ of previous lexical analyzer tools).
Flex

The input to Flex can be any standard input stream in C, including
direct user input via an AmigaShell window,text file, or the output of
another program (and possibly other ways of generating input that I
have not thought of). In the input, ANSI characters are considered
valid, so from the theory point of view, your "alphabet" is all ASCII
letters, numbers, whitespace, and punctuation can be dealt with. Since
the source code for these programs is available, it is possible to
modify Flex to accept other symbols, and possibly with a bit of
effort, binary files, but I personally wouldn’t try that without
extreme confidence in what was to be done.
Bison

Bison accepts the tokens that Flex can generate, which are read in
from a table of tokens generated by Bison, with the use of the %token
command. It also recognizes single characters, so there is some
overlap with Flex, but consider it the second stage of a two-part
process, not the end-all lexical analyzer, and you will save yourself
much grievance upon this inevitable conclusion. It is a really really
good idea to double-check the case and spelling of the return values
of Flex and the tokens that Bison recognizes, as they must be properly
identified at the top of the Bison program (on top of using the
standard include file bison.tab.h , which is the table I just
mentioned), because technically speaking, the include file bison.tab.h
is built off of the return values of the Flex program. Bison senses
these tokens as integers with the use of C’s #define preprocessor
instruction, as you can observe in the include file, so if you chose
to do something with numbers, be aware of the dreaded "magic numbers"
pitfall of programming constants into your code.

Bison and Flex programs by themselves wouldn’t compile under C. As I
said before, they are preprocessor languages (meaning the Flex and
Bison Code must be processed first), but they generate C source code
(which is a typically large file, I might add, so be prepared for
that) which can be compiled with your GCC compiler, or other
compilers, assuming you are doing things which are pure to ANSI C, and
do not reference things specific to a given compiler or Operating
System (otherwise, you are stuck preprocessing on your Amiga only!).
One benefit of this flexibility through standards is that should your
Flex and Bison preprocessor code become lengthy, the task of turning
it into ANSI C could be left up to another, more powerful machine, and

ARTv1i3 18 / 35

with the blessings of a good modem, this machine could be anywhere,
like the monster server at work or school which always seems to have
spare CPU cycles for an avid programmer like yourself. This time is
considerable for larger programs, and if you are doing fancy tricks,
you will soon see that the preprocessing can be a considerable chunk
of time on your Amiga.

The GCC AmigaGuide documentation on Flex and Bison make reference to
some rather simple calculators and a Pascal language recognizer. This
is primarily because these are the classic examples of what Flex and
Bison are good for. The real purpose of this article is to get past
that, and focus on the application of these two languages, not the
instruction itself(how could I possibly top GNU documentation?). As I
worked with these languages at my University, I discovered that state
machines (which is the theoretical machine which they are based upon)
are capable of much more, and should be utilized to their fullest.
Only a modicund of work is necessary to do powerful things with these
languages, and I feel it adds to the community of the Amiga if we, the
programmers, show off how clever we are, to the benefit of our fellow
end-users.
Anagrams

Just a week or so before I began this article, I saw a posting on
comp.sys.amiga.misc which listed "Top Ten Anagrams" for the title of
Amiga Technologies, the entity which brings us newer, faster Amigas
from Germany. I pursued the poster of the article to find out where
the anagrams came from, as I was suspicious that it was done with a
computer. Sure enough, there was a WWW site which would take a string
in and output as many anagrams as it could form from the string. It
didn’t take me long to figure out that the Flex program to do this was
conceivable, through the theoretical construct of set notation:

Set 1 is all tokens which are words in the English language.

Set 2 is all tokens in Set 1 which use the characters in the input
string, but no more than once per occurence, otherwise you would end
up with "too" as a valid word formed from the input "to", which is
impossible, because "to" has only one ’o’ in it to begin with.

The English language is large. That’s why we made Set 2. I realize
this can work for any language, but there would need to be
modifications made to Flex to recognize things like umlauts and
estsets, much less all of Kanji. Any language spoken by a culture is
going to be computationally large. That is why the program to make
these anagrams must focus itself to only valid words.

Once one has Set 2 defined, the following must occur to finally get
the anagram:

Start with the largest word (sized by the number of characters in it)
constructible by the input string in Set 2, then remove those letters
found in that first word from the input string, like you were crossing
them off an imaginary list of letters that you have used up.

Pass what’s left through the code that recognized the first English
word that was found, doing this recursively.

ARTv1i3 19 / 35

If you use up all the letters in the original input string, then print
the anagram. Otherwise, you have leftover letters, and did not succeed
in making an anagram.

Permanently remove that first word from Set 2, once you have exhausted
all attempts at making an anagram with the first word used first. Why?
Well, you will end up with every possible order of words for every set
of words which fits the anagram, and much of this is not something
that needs to be done with the parser (making various orders of the
words in the anagram does not involve parsing, it involves sorting),
and besides, this is going to be a much larger list. I suppose this is
up to you, but passing just my full name resulted in 45 different
anagrams, where each anagram was a unique set of words, and had I
opted to have all the pattern orders calculated, the number of
responses would be roughly 45 times the factorial of the average
number of words in each anagram.

After removing the first word of Set 2, pass the second largest word
constructible by the input string in Set 2. If you repeat as you did
above for the first, using recursion, you will ultimately get all
unique anagrams that can be made from the input string.
Scanning for words

This little project is a fairly short program to write in Flex, and
it would be significantly more challenging to write in C.
Unfortunately, the code for this program is nowhere near as intuitive
as the breakdown of the problem. Just to give you something that is a
bit easier to approach in terms of solving on your own, in case this
puzzle has you stumped, think of a program in Flex (only) that scans
the words of the English language and returns only those which have
the letters A, E, I, O, and U occuring in that natural order
(interspersed with consonants, of course). "Facetious" is one such
word. The solution for this problem is quite short.

The first step is to make a single predefined set of all consonants,
and then reference it inside the rules. The set looks like this
(CONSONT is my name for the set):

CONSONT [bcdfghjklmnpqrstvwxyz]*

And it can be referenced in the rules section to solve the puzzle in a
single line:

a{CONSONT}e{CONSONT}i{CONSONT}o{CONSONT}u{CONSONT}

Although, realistically, the puzzle needs a few more lines for
housekeeping purposes, these two lines are the ’creative’ part of the
problem.

A complete Flex input file, with C++ main(), is included as
puzzle.yy. It can be tested with the commands
flex puzzle.yy (which creates a C++ source file named lex.yy.c)
cc lex.yy.c (or sc for SAS/C, of course)

Flex is quite useful for problems that deal with formatted input.
Bison, on the other hand, is better for complex structural input. The
examples mentioned earlier, like those of a language parser or a

ARTv1i3 20 / 35

calculator do indeed show that Bison can handle tasks which would be
difficult in Flex, and require programming in Flex’s own state machine
commands, which would tend to require redundancy for every input in
every state which is not relative to a valid input pattern (or
collection of tokens that forms a pattern recognized by a grammar).
Take a look at the examples in the AmigaGuide documentation for Bison,
and see what I mean.
Uses for Flex

Perhaps you are asking yourself "why do I want to program another
calculator?" or "I don’t even use Pascal anymore, why would I want to
parse it?" as I did when I first mulled over these examples. The
answer most likely is that you are not. Flex and Bison together are
tools that we as programmers can use to make our work easier (and with
them, perhaps someday we can have a program which solves crossword
puzzles by brute force permutation). The most common programming tool
that uses these two languages is what is known as a pretty printer.
Basically, this is a program that makes appropriate use of white space
in our source code, and indents and flushes our code so that when
reading it, the lexical levels (scope levels) appear as successive
indentations, our comments line up neatly, and functions that wrap
around to the next line do so neatly. But, there are pretty printers
out there, and there’s one in GNU Emacs that runs on the fly as you
code, part of the text editor itself (written in Lisp, I believe).
Lexical analyzers can be made to preprocess your source code and check
for bugs in implementations of libraries, giving you feedback where
your compiler misses details (or gives you nearly meaningless error
codes like "parse error," which tells you your grammar seems to be
off). They also appear in newer word processors (on the IBM platform,
as far as I have seen) that check to see if the word you are using is
in its dictionary of the English language, and fix the spelling for
you on the fly. Unfortunately, this isn’t a good way to improve your
spelling skills, and often, it doesn’t handle the actual use of the
word (their as opposed to there), leaving you with not a spelling
error, but scattered English grammar. Command shells can also be built
with lexical analyzers, and as we have seen with programs like KingCon
and others, a lot of control is added over the standard AmigaShell.

The development tool I would like to suggest experimenting with is
meant for the ambitious (for the non-ambitious, work on the word
puzzles until you are ready) programmer who wants to make lexical
analyzers work for him/her in the professional arena. Often times, as
we are faced with developing software, there is a tremendous amount of
documentation which is coupled with what needs to be written in the
actual program, and comments galore. As humans, we programmers face
the daunting task of remembering what var1 is, and why it is equal to
my_input1 (good examples of bad variable names), and in the process of
software development, we forget, again and again. We make silly
mistakes because it’s 3:00am and the side-effects of too much coffee
are making us jittery and distracted.

Documentation and the classical techniques of software development are
designed to help us, not waste our time when we could be debugging. If
we were to somehow encorporate documentation with software
development, and then reference the documentation as we code our
software, a lot of pitfalls could effectively be removed from the
software development process. The next question, naturally, is how.

ARTv1i3 21 / 35

The answer is totally dependent on your views, but here is my
perception of things, and I hope it can spark even better ideas as you
read. When I develop software, I recognize a few different stages of
it. There’s the analysis and specifications phase, where the idea is
nailed down and copied off the white board and onto paper. Then there
is the design phase, where the implementation of the idea concerns
itself with issues of input devices, methoods of response, machine
specifications, application appearance and operation, and other issues
of the software as the user would see it. After that is established,
the architecture, what is behind the design, is hammered out.
Functions are given names and purposes, data structures are contrived
and outlined, and program control is carefully mapped out. After the
program is structured, the application then goes through a process of
narrowing focus on each function, algorithm, and manner of execution,
until finally there is a program sitting on the hard drive which you
(and your development team) have written, and you are positive it is
worth something because you tested it and it works and it is what you
wanted.

Lexical analyzers can come in handy as the programs by which programs
are written under. With enough flexibility, a good software designer
application can address all of these phases of software development
with the general principal of question and answer. Take the following
interaction as a possible way that this tool could behave:
1. Ask the designer for a few sentences on what the program to be

written will do.
2. Ask the designer to expand the abstract of the program when it

finds certain key words

user
I want to write a video game where you are flying this ship
through a jungle and shoot at aliens. The aliens fly at you in
different waves, and get harder to shoot. Also, as you go
along, you can pick up weapons and make your ship faster, get
extra lives, and bonus points. There will be a main boss enemy
at the end which is hard to kill.

design tool
So you are writing a ’game,’ eh? Good idea. When you described
it with ’you are flying,’ what did you mean by ’you?’

user
the player.

design tool
Then it should read like this, right? ’I want to write a video
game where the player is flying’

user
yes.

design tool
How about ’aliens fly at you,’ is that the same ’you’ as ’the
player’?

user

ARTv1i3 22 / 35

yes.

[and so on, until every use of the word ’you’ has been clarified. When
the meaning of the word ’you’ branches, the computer starts asking
which ’you’ it is based on a larger range of possibilities.]

design tool
So, as I understand it, your ’game’ can be described as:
I want to write a video game where the player is flying this
ship through a jungle and shoots at aliens. The aliens fly at
the player in different waves, and get harder to shoot. Also,
as the player goes along, the player can pick up weapons and
make the player’s ship faster, get extra lives, and bonus
points. There will be a main boss enemy at the end which is
hard to kill.

design tool
Are you happy with this definition, or do you want to make
corrections?

user
It’s fine. [or any variety of acceptable responses]

design tool
Alright, let’s move on.

design tool
Tell me more about the ’ship’ you mentioned here: ’the player
is flying this ship’.

user
It’s a spaceship. It is an Alpha Class fighter.

design tool
Is this the same ship as referenced in ’make the player’s ship
faster’?

user
yes.

[and so on. The idea is to expand definitions as much as possible to
avoid ambiguity, and create appropriate handles for the design tool,
as well as save the user from writing documentation which isn’t
intuitively defined. In the end, the short description could look
something like this.]

I want to write a video game where the player is flying this Alpha
Class fighter-spaceship through a jungle on the planet Zarkan and
shoots weapons such as missiles, lasers, and nuclear warheads at
three-headed space aliens, giant snake space aliens, blood-sucking
vampire aliens, and octopus aliens. The same aliens fly at the player
by weaving back and forth, dancing across the edges of the screen,
darting in from the corners, and materializing randomly on the screen,
in different waves, where the same aliens will fly in squadrons of the
different kinds of aliens and in different numbers, and it gets harder
for the Alpha Class fighter-spaceship to shoot its weapons at the same
aliens. Also, as the player goes along the jungle on Zartan, the

ARTv1i3 23 / 35

player can pick up more powerful missiles, broader lasers, and more
dammaging nuclear warheads, and make the Alpha Class fighter-spaceship
manouver on the screen faster, get extra lives which allow the player
to start where the player was killed and continue, and bonus points
which increase the player’s overall score. There will be a main boss
enemy alien that attacks the Alpha Class fighter-spaceship at the end
of the jungle on Zartan, and the boss enemy alien is hard for the
player to kill.

At this point, you are probably saying to yourself "okay kid, let’s
see this wonder program of yours so far, written in something which
has previously only been demonstrated as a calculator builder." Right
you are, this is daunting and ambitious. Here’s how I would do it:

By establishing certain rules of the English language, we can
familarize ourselves with possible ambiguities. The most obvious one
is the use of pronouns in a sentence. Take this sentence as an
example:

When my brother took me to see our dad, he said that mom was going to
be late for dinner.

Who spoke? It is totally vague. It should logically be the brother
because the brother was the subject of the time clause, and therefore
has more weight than the infinitive phrase ’to see our dad,’ but it
could very well be the dad who spoke. Watch for this in conversations,
see how many times you have to ask whether it was the dad or the
brother (metaphorically speaking) who spoke.

By first addressing this ambiguity, the specifications document can
become significantly clearer, almost as if you had someone there to
proofread for you. In the English language, there are happily a finite
set of words that can be classified as pronouns. It is relatively easy
to parse them out and poll the user to specify what is meant at each
instance, then replace the pronouns with only the object of the
sentence which was typed in as a response to reference the pronoun(and
parsing the English language is easy enough with Bison, because a good
writing style handbook will have some notes about sentence structure,
and this can be translated into something Bison can recognize). Oh,
sure, this application can be fooled with enough trickery, but that’s
why programs come with instructions telling you not to use the
subjunctive when addressing the program (or at least some mechanism in
the parser which produces an error message about the grammar being too
complex in the response, for the parser to understand, and poll the
user again).

With this mechanism of polling responses and doing textual
replacements, all the pronouns can be clarified. In addition, the
implied subjects of gerunds can be specified where the structure of
the sentence makes it vague, and it can also correct poor grammar (as
a note, Final Copy II does grammar checking, so don’t think this is
unheard of).

Once things are laid out, and everyhing is undeniably under only a
single interpretation when read, you will have a pretty solid
document. Why go to so much trouble? Well, the original reason for
this is so that people who read it don’t have to ask questions like

ARTv1i3 24 / 35

"who said mom was going to be late for dinner? I’m not sure which
person is saying that." The additional reason revolves around the fact
that all documentation in this application builder is functional.

The document can slowly grow into something complete, to the point
where no further questions can be asked regarding details of the
program. For example, at one point, I mentioned nuclear warheads in my
sample run. These are considered weapons that belong to the
fighter-spaceship controlled by the player. Weapons can be fired at
the enemy. They can also hit the enemy and be upgraded as the game
goes along.

From a structural standpoint, the application can ask How the nuclear
warhead is fired by the player, how the game will know when they hit
the enemy, what happens when they hit the enemy (explosion, more
points, what happens to the enemy when it is hit, and so on...), and
how they are upgraded (at perhaps a certain number of game points,
perhaps something is dropped by the enemy when it is destroyed, you
decide.).

From a visual standpoint, things can be asked like when the nuclear
warheads are fired by the player from the fighter-spaceship, what does
it look like? What does it sound like? Obviously, there is no room for
me to expand this entirely, even from this tiny aspect of the
programming, but I think the idea is clear enough.

Given the visual descriptions (which might again be polled if it uses
some kind of gerundive like flashing or burning, which hints at an
animation or special effect), the application can define enough of the
details that this portion of the design can be distributed to the
artist, and the artist will know what to draw and how many drawings
will need to be made for just this portion.

Given the structural descriptions, the application can build its own
state machine for the game, determine all the modules which need to be
built (ones that launch warheads, ones which handle aliens being hit
by warheads, etc.), and even begin on assembling actual program
control based on enough of this high-level context. In fact, if this
program is used more than once, it is possible that a library can be
established over time, containing code modules to handle frequent
events, and given the hard drive space, this sort of application could
truly blossom into a powerhouse of application building.

The example of the video game seems a bit complex. Games are complex.
But, I wanted to show the flexibility that has to be considered for a
project like this. Try to consider a simple data entry program with a
graphical interface. The documentation for this is fairly short,
assuming it is primitive. There’s some entry functions, access
functions, program control, file I/O, and maybe printing facilities.
There are gadgets and menu options on a single window. There is likely
little artwork or sound effects, no animations, and no musical score
(unless you are weird). Still, it is asking a lot of our minds to
constantly have a clear picture of the entire application that doesn’t
change or get confused or forget parts. If we do a layout of all the
buttons and text fields, what happens if somewhere down the line, we
forget to add a button? The further down the line, the more code is
lost, and the greater chance that there will be a bug. Right?

ARTv1i3 25 / 35

The actual specifications for this application builder are somewhat
beyond the range of a document meant to inspire programmers into using
Flex an Bison in new and innovative ways, and I appologize for not
being able to do this, but like the anagram problem, the
implementation is tremendous, because details simply are not covered.

I hope you can appreciate, as I have, the value in these small
programs, and use them to their fullest potential. However, I have one
frightening word of caution about all of this. GNU is part of the Free
Software Foundation. You are well advised to read the legal preambles
to the use of Flex and Bison. You may discover that your application
is subject to being only freeware, much to the chagrin of your
monumental intentions. I believe there is a point where significant
modifications made on the source code generated by Flex and Bison will
result in it no longer being under these rules, however, if you are
thinking of doing a search and replace on variable names, moving
functions around, and a few other tricks, just remember what these
programs are designed to do, and think to yourself that GNU probably
has some sort of way of testing for typical changes to their code.
There is a light at the end of this tunnel, though. The source code
for these applications is freely distributable, and so modifications
of that source code and compilations of your own de-FSF-ized versions
of Flex and Bison could result in a nullification of GNU’s hold over
what you write with their programs. If you are serious, talk to a
lawyer, and don’t take the word of a college student (me) on what the
law states.

A simple resolve to this (assuming my last theory holds in a court of
law) might be to make an implementation of Flex and Bison that makes
specific calls to the Amiga libraries, and not the ANSI C text I/O
functions. Whatever the case, just remember to check with your lawyer
before putting a pricetag on it.

If you have read this entire document and are still at a loss as to
what Flex and Bison can do for you, here are some ideas worth
exploring:

Write a program that scans in AmigaBasic programs and converts them to
C source code, so all your Basic code can have a second life.

Write a hard disk organizer which reads in all of your .info files and
does such things as intuitively assign your favorite text reader as
the default tool to all the text files, or your image viewer for image
files. How many times have you gotten an archive off the net with lots
of little text files, only to face the fact that you have to edit each
.info files yourself? Wouldn’t it be nice if something were to run and
look for references to known text editors (and their paths) and
reassign them to what you actually have?

Write a C parser which inputs your old source code and makes an
attempt at optimizing readiblity by modularizing your 1000 line
functions into smaller pieces, then placing them in separate source
files.

Write a text encryption program however you wish.

ARTv1i3 26 / 35

Write a program that builds form letters based on a core letter,
variable points, and a separate file formatted with those variables
(people’s names, addresses, etc.).

If you have to distribute source code with your application and you
don’t want people to understand it, write your own program which
muddles the readability of your code by stripping comments, using
incremental nondescript variable names, and replacing text segments
with long, tedious strings of ASCII hex codes.

Write a program which makes a feeble attempt at commenting Assembly
code on the Amiga, by identifying what certain base adresses represent
in memory operations or library calls, cite what the value of certain
registers are (based on where they were originally input) and what
they change to), and generate a separate program flow chart, perhaps
in the form of a real picture.

Write a floppy-disk organizer for floppy-based systems which
stratifies individual disks based on file content (a disk full of all
your letters to mom, another with your collection of sound effects),
and optimizes space usage to fill each disk to the brim, or to
whatever capacity you wish to have remaining, then swaps around all
your files for you.

Please don’t let your own list be this list alone. It shouldn’t stop
here. I encourage you to talk with your fellow Amiga programming peers
and divas about solutions to some of these problems. In these
uncertain times, the best thing we can do for the machine we love is
make programs which don’t exist anywhere else, and pioneer high-tech,
clever software which the end user has just got to have, because it is
too cool to do without. If you have questions about Flex or Bison, are
having trouble installing your free GCC compiler, or you need some
kind of informed response to a question that covers the issues I
mentioned, feel free to ask. I will do my best to answer as my own
work schedule allows. But, before I get barraged with questions about
shift-reduce and reduce-reduce errors, let me say this much: when you
are using these languages, implement the technique of stepwise
refinement; get a small part of it to work concretely, then add to
that portion. It is tempting to lay things out all at once, pray, and
compile, but when you have 100 lines of Bison rules, and over 400
reduce-reduce conflicts, it really does take less time to start over,
using your rules as a template to stepwise refinement. You will learn
the (poorly explained anywhere you look) fickleness of token
look-aheads and impossible or vague grammars if you deal with your
errors one at a time. And remember, even though there may be hundreds
of conflicts, there may be only one error in your grammar.

About the author

Joe C. Solinsky was a student at the University of California at
Riverside for 4 years. He is currently doing research at the
University in robot simulators as a graphics programmer, but is
looking to move out of the Ivory Tower of college, and into the real
world again. As an Amiga user since 1987, he is die-hard about his
favorite machine. He can be reached the following ways:
jcsky@cs.ucr.edu

ARTv1i3 27 / 35

joe@mindesign.com
2442 Iowa Avenue Apartment K-8
Riverside, CA 92507
USA
(909) 788-5408

1.8 Installer

Installer Basics
Robert Reiswig <rcr@netcom.com>

What version of the Installer are you using?

This time I am taking a bit of a break from doing the Play16 installer
example. I wanted to talk abit about the different versions of the
Installer. As I mentioned in my second article, two different
divisions of Commodore contracted out to Sylvan Technical Arts for the
installer. CATS contracted then to do an installer for Kickstart 1.3
and 2.0, while the contract by Engineering was for 2.0 only.

As a result, there are quite a few different versions of the Installer
out there. The problem is that they all do not support the same
commands. Though 95% of all the Installer scripts you run across will
work with just about any version of the Installer binary, it seems
that a few of the more complex and bigger PD packages take full
advantage of all that it has to offer. This includes using some of the
commands that are not supported by some of the different versions of
the Installer.

The new X-Windows package for the Amiga, AmiWin, uses the commodore
Installer. He uses the BITAND command and this seems not to be
supported in many version of the installer. (AmiWin20d.lha on Aminet
in gfx/x11) The CyberGraphX installer uses the ’newname’ option for a
’copyfiles’, this also seems to have problems on some installers.
Versions

Here is a list of Installer versions that I have collected over time.
If you have a version that I am missing, if you could please uuencode
it and email it to me at installer@vgr.com that would be great! To
check to see what verison of the installer you are running get into a
cli/shell and type: ’version installer full’ . If you installer is
Imploded with Imploder then you will not be able to get a version
string from the cli/shell. You will need to run the installer with a
script and select the ’About’ button.

Imploder is a program that ’packs’ or compress executables and still
leaves them in a runable format. The big advantage is that it saves
room. When you put together a distribution disk and you are running
out of room many people use Imploder to implode the installer binary
and cut the size in about half. Imploder can be found on Aminet as:
imploder-4.0.lzh in the util/pack directory. Even Commodore sent disks
out with the installer binary Imploded.

The imploded sizes in the following table are after using Imploder 4.0

ARTv1i3 28 / 35

with the default settings.

Version String Size Imploded
installer 1.24 (1-09-92) 115144 62684
installer_2 2.9 (23-03-92) 111504 60056
installer_2 2.12 (15-05-92) 113224 60936
installer_2 2.15 (3-08-92) 113740 61300
installer_2 2.17 (13-02-93) 113532 61236

What Version to use?

What version should you use? Well if you can get version 2.17 off an
Commodore Install disk that might be best. 2.17 seems to do
everything. The next best bet it to grab Installer-1.25.lzh in
util/misc of aminet. This archive really has version 1.24 in it. This
is what most Commercial programs come with and seems to run just fine.
Also 1.24 can be found on Fred Fish 870.
NOTE

If you do not already have the "Installer" program in your "c:"
directory, it would be a good idea to get your Install Disk (the one
that comes with the Operating System Disks), and copy the Installer
from there to "c:" _or_ at least place it somewhere in your path.

Also pointed out in the last issue by the Editor (something that I
should have done) is that you _should not_ hardcode a path to the
installer in the tooltypes. Instead just have ’installer’ for your
’Default Tool’ in the installer script icon.

Well that is about it for this installment ... hoped you learned
something!! If you wish to get more detailed information there is an
Installer archive in/on the Fred Fish Collection that covers the
older 1.24 installer.

This article is ©1995 by Robert Reiswig. If you wish to reprint this (all
you have to do is ask) or have any questions please let me know! I can be
reached at installer@vgr.com or rcr@netcom.com - ARTech can be reached at
artech@warped.com

1.9 ARexx tutorial

Arexx Tutorial
By Josef Faulkner (panther@gate.net)

1.0 - Introduction

I am assuming you know what Arexx is and the history behind it. If you
don’t know, this information is readily available in the first chapter
of the Arexx User’s Guide that comes with Workbench. This book is also
a very handy reference, so dont lose it! :)

If you are familiar with any programming language from Basic to C, you
will have no problem picking up Arexx. Arexx is one of the easiest

ARTv1i3 29 / 35

languages to learn and to work with. When writing arexx programs, you
do not need to deal with silly line numbers (as in basic), or worry
that the computer will crash if it doesnt correctly open a library (as
in C). Arexx is very difficult to crash on its own, so feel free to
explore it.

Arexx is one of the things that makes the Amiga one of the best
Personal Computers anyone can own. The Amiga was designed to multitask
in such a way that even operating systems built 10 years later still
have yet to fully close the gap on the efficiency and integration of
the Amiga multitasking environment. Arexx takes advantage of the
Amiga’s ability to multitask by allowing us to greatly customize our
favorite applications. However, it is not necessary to write arexx
scripts for programs, but to write an entire program in Arexx,
independent of any applications. For example:

/* calc.rexx - A simple command line calculator */
parse arg args
interpret ’say ’args
exit
/* End */

Don’t worry about what this says yet, I plan to explain all of this
later. To use this script, cut it out, and save it as rexx:calc.rexx.
Be sure to include the comment at the top. To use it, type rx calc 2+2
in the CLI. This will also be a helpful debugging tool later on.
1.1 - Making sure everything is in place

Arexx needs a few things in place in order for it to work. Workbench
handles most of this, but it seems to have left out some important
details.
1. Getting the Rexx: directory straight.

+ Make a directory on your SYS: partition named Rexx:
+ Edit your S:Startup-Sequence and change the line that says

Assign >NIL: REXX: S: to Assign >NIL: REXX: SYS:Rexx
2. Making sure RexxMast is run.

+ Add this line to S:User-Startup: Run >NIL:
SYS:System/Rexxmast >NIL:

3. Making sure RexxC is in the path
+ If you are running WB2.1, I dont think RexxC is put in the

path on installation, so you will have to add it in your
S:Startup-Sequence.

+ Look in your S:Startup-Sequence file for your path statement,
and add RexxC: after SYS:Utilities/.

+ I also recommend adding REXX: to (end of) the path, so that
you can later protect your arexx scripts with the script bit,
and run them like a regular AmigaDOS command.

4. File check
+ Be sure the following files are in your SYS:RexxC/ directory:

TS TCC RXC TCO WaitForPort HI RXSET RX RXLIB TE
1.2 - Usage

There are two ways you can run an Arexx command. One is to use the RX
command located in the SYS:RexxC directory, the other is to use the
script file flag to tell AmigaDOS that the script is a command.
Examples:

ARTv1i3 30 / 35

1> rx calc.rexx 2+2
4
1>

1> protect rexx:calc.rexx +S
1> calc.rexx 2+2
4
1>

The second method requires that REXX: is added to your path.
1.3 - Comments

All arexx script files must begin with a comment. This comment tells
the arexx interpreter, as well as AmigaDOS with +S files, that this is
an Arexx script.
Example:
/* This is a comment */

It doesnt matter what you put in the comment, however it is standard
practice to at least include a short description of what the program
does. However, try to minimize long comments at the beginning of
frequently used scripts, as it might slow down the execution of the
script. It is best to put long descriptions and such at the end of the
arexx script, so that it isnt scanned by the interpreter.

Unlike C, comments may be nested in Arexx, although I dont see much
use for it :)
1.4 - Variables

All variables in Arexx are stored as strings. However, when numerical
operations are done, Arexx will automatically treat a string holding
numbers to a number, do the operation, then store the result back in a
string. This has great advantages, since you wont have to do any
casting, and you can mix numbers with strings very easily.

For example, in lower level languages, if you wanted a user to be able
to enter either a string or a number into a variable, you have to read
their input into a string, then if that string is a number, convert it
to a number variable. In arexx, you simply take the input, and then
you can immediately use it however you wish. Example:

/* (variable.rexx) - Shows how variables can be used */
variable=’TEXT’
say variable
variable=variable’ ’15 /* Puts the string "15" as another word */
say variable
say word(variable,2)*2 /* word() is a function that returns a specified */

/* word from a string. In this case we are */
/* looking at the second word, which is 15. */
/* This will say 30 as the answer since we are */
/* multiplying the second word of variable by 2 */

exit

Concatenation is joining two strings together. When we put the 15 in
variable, we told arexx to leave a space so that 15 would be the
second word. If you do not want a space, you can join two strings

ARTv1i3 31 / 35

using the || operator (two pipes).
Appendix A

Arithmetic Operators

Char Operation Pri
----- ------------------ ---

** Exponentiation 7
/ Division 6
% Integer Division 6
// Modulo (Remainder) 6
+ Addition 5
- Subtraction 5

Comparison Operators

Char Operation
----- ------------------------
== Exact equality
~== Exact Inequality
= Equality
~= Inequality
> Greater Than
>= Greater Than or Equal To -.
~< Not Less Than -‘-- Same thing
< Less Than
<= Less Than or Equal To -.
~> Not Greater Than -‘-- Same thing

Logical Operators

Char Type Pri
---- ---- ---
~ NOT 8
& AND 2
| OR 1
^ XOR 1

Other Characters

Char Description
: Procedure/Function Label
() Group operators and operands to override priorites
; Statement Terminator
, Marks a continuation of a line (to a new line)

Written exclusively for Amiga Report Technical Journal

1.10 Results of the ARTech survey

Results of the user preference survey

ARTv1i3 32 / 35

In ARTech issue 2, I asked you, the readers, what aspects you feel are
the most important in a good program. I got 31 answers, far too few to
really count, but it might give some idea of the things users expect
regardless.

Below are the choices, listed in order of importance. The score is the
average score in the replies, with the range of 1 to 5.

1. Stability [4.97]
2. Speed [4.00]
3. Detailed documentation [3.71]
4. Extensive configurability [3.68]
5. ARexx interface [3.58]
6. Pretty interface [3.55]
7. Interface in your native language [3.32]
8. Command line usage [3.10]
9. Low memory usage [2.97]

10. No mouse required for most important features [2.94]
11. Documentation in your native language [2.90]
12. Many flashy features [2.39]
13. No mouse required for full interface control [2.10]

8 of the respondents were from USA, 5 from England and Italy, 4 from
Germany, 3 from Sweden, and 1 from Finland, Australia, Netherlands,
Poland and Canada each.

The majority of people, 20, found ARTech on Aminet, with WWW and BBS’s
both getting 5 people. One person got ARTech from Compuserve.

1.11 BOOPSI guide

BOOPSI Overview - part 2
By Chris Aldi <caldi@pcnet.com>

This article is designed to provide the novice BOOPSI programmer
information to aid in writing a custom gadget class for an
application. The reader is assumed to be familiar with some basic
BOOPSI and/or OOP concepts. I recommend reading the BOOPSI chapter of
the RKM:Libraries Manual, 3rd Edition, then perhaps come back and read
this overview again and it should start to make more sence. Also, if
you missed it the first part of this article appeared in the premier
issue of AR Tech.

In part one, the generic BOOPSI object methods were discussed, as well
as the gadget methods specific to gadgetclass writers. Now, we will
take a quick look at some of the imageclass methods, discuss some
rendering optimizations which you can apply to both gadget or image
classes, and provide some example source code which can be used as a
basis for custom class work.

Image objects

ARTv1i3 33 / 35

Just as all gadgetclass objects are of the struct Gadget type, image
class objects are of the struct Image type. The superclass will fill
out a good portion of the Image or Gadget structures at OM_NEW or
OM_SET time based on the tag attributes passed via SetAttrs(),
SetGadgetAttrs() or NewObject() function calls.

Image methods

Method spefic message structure definitions can be found in
intuition/imageclass.h, note the first ULONG of the message will be
the MethodID idenfier which your class dispatcher can use to direct
the message to the proper function in your image class.

The follow methods are common for all classes of image objects:

IM_HITTEST

For rectangular images all you have to do is pass this method to your
superclass which will handle it. If you so choose to handle this
method yourself, you muse return TRUE if the point is within your
image structure’s TopEdge, LeftEdge, Width, Height fields. The
IM_HITTEST method uses a impHitTest message structure.

IM_HITFRAME

This method is very simular to IM_HITTEST, but is a special version
for images that support IM_DRAWFRAME. It is just like IM_HITTEST
except it tests if the point is would be within the image if the image
is clipped or scaled to some rectangular bounds. It too uses a
impHitTest structure. Take note, imageclass treats IM_HITFRAME exactly
like IM_HITTEST, thus ignoring the restricting dimmensions.

IM_ERASE

Intuition will send this method when an image object is erased with
the EraseImage() function. This method, like IM_HITTEST, can be passed
to the superclass. The imageclass will use EraseRect() to erase the
image using the values in the object’s image structure. It uses a
impErase message structure.

There doesn’t appear to be an IM_ERASEFRAME method, so if your object
supports IM_DRAWFRAME be sure that imageclass or your class handles
IM_ERASE appropriatly for your image object so not to erase anything
outside of the last rendered clipping/scaling IM_DRAWFRAME
dimmensions.

IM_DRAW

This method is sent when an image object needs to rendered. Typically
the application or perhaps a gadgetclass will use DrawImageState() to
render an image. For boopsi images, this will cause an IM_DRAW method
to occur. This method uses the impDraw message structure. Contained in
this structure is an imp_State field which defines which state the
image should be rendered in. Some common states are IDS_NORMAL,
IDS_SELECTED (typically, you would reverse shine/shadow pens for

ARTv1i3 34 / 35

bevels, perhaps show some alternate image, etc), IDS_DISABLED (render
image with a ghosting pattern over it), etc.

Generally you can get your pen settings from this structure as well by
looking at imp_DrInfo->dri_Pens but imp_DrInfo can be NULL in some
cases, so your advised to check for this and optionally use some
reasonable default pen settings.

IM_DRAWFRAME

This method is much like IM_DRAW except it uses an extended message
structure which includes some bounds clipping dimmensions. At your
option, your image class should scale or clip rendering to stay within
this "frame" area.
RENDERING TIPS & SUGGESTIONS

1.
For complex imagery with a great deal of rastport setting changes such
as pen colors, fill modes, etc, use cloned rastports. This is
simple enough to do and doesn’t use all that much memory either.
For example:

struct RastPort *rp;
struct RastPort clone_rp1;
struct RastPort clone_rp2;

clone_rp1 = *impDraw->imp_RPort;
clone_rp2 = *impDraw->imp_RPort;

SetAPen(&clone_rp1, impDraw->DrInfo->dri_Pens[FILLPEN]);
SetAPen(&clone_rp2, impDraw->DrInfo->dri_Pens[TEXTPEN]);

Now, you can render in TEXTPEN via clone_rp2, and in FILLPEN via
clone_rp1. Since SetAPen() and simular functions often involve
some complex computations, there is something to be gained by
pre-computing the rastport settings and using the appropreatly set
rastport.

2.
Take care not to render in the same place twice. By this I mean when
filling the area inside a button, do not over render the bevel box
then re-render a surrounding bevel. This will cause unwanted
flashing of the bevels. Also, do not assume the bevel boxes are of
a fixed size unless they are your own. Bevels provided by
frameiclass could change thickness in a future OS revision, as
could something like ClassAct’s bevel.image change its bevel
size/style via revisions or use preferences programs. It is always
best to query the beveling image for its bevel bar size, and
account for that in any rendering operations you do.

3.
When rendering, do as little work as possible. When rendering gadget
imagery, do not render imagery that has not changed. For example,
a scroller gadget need only render the arrow button that was
selected and again when deselected. It should never need to
re-render any bevel around the proportional slider area, or render
the other arrow button. When dragging the proportional slider,
there is no reason to re-render the arrows at all. Since the
gadget knows what element of the scroller made it active, you can

ARTv1i3 35 / 35

set some flag variables or bitmask in GM_GOACTIVE, them evaluate
them in GM_RENDER when the redraw method is GREDRAW_UPDATE. When
the redraw method is GREDRAW_REDRAW a complete refresh is needed
regardless of the flag settings. You can determin this by looking
at the gpRender structure’s gpr_Redraw field (see
intuition/gadgetclass.h).

Chris Aldi is the co-founder and president of Phantom Development, and
a co-author of the ClassAct BOOPSI toolkit. You can reach him at
caldi@pcnet.com.

1.12 Contributors, staff, and contact addresses

Amiga Report Technical Journal is an FS Publications production.

Staff

Producing Editor, Osma Ahvenlampi, Osma.Ahvenlampi@hut.fi

Supervising Editor, Jason Compton, jcompton@xnet.com, FS Publications.

Contributors to this issue

Sebastian Rittau, Jolly_Roger@H-Raiser.Berlinet.de

Joe C. Solinsky, jcsky@cs.UCR.edu

Ken Howe, khowe90@entergy.com

Chris Aldi, caldi@pcnet.com

Robert Reiswig, rcr@netcom.com

Josef Faulkner, panther@gate.net

Contact addresses

Email: artech@warped.com

Snail mail:
ARTech c/o Osma Ahvenlampi
Rekipellontie 2 F 55
00940 Helsinki
Finland

	ARTv1i3
	No title
	Editorial
	The latest funky interests
	The mail room
	Programming in C
	AmigaE Tutorial
	Introduction to Flex and Bison
	Installer
	ARexx tutorial
	Results of the ARTech survey
	BOOPSI guide
	Contributors, staff, and contact addresses

